HSGreedy: A Local Search MaxSAT Solver based on Dist

Yi Fan, Zongjie Ma, Kaile Su, Abdul Sattar
Institute for Integrated and Intelligent Systems

Griffith University

zongjie.ma@griffithuni.edu.au

Chenggian Li
Department of Computer Science
Sun Yat-sen University

Qingliang Chen
Department of Computer Science
Jinan University

Abstract

The Maximum Satisfiability (MaxSAT) problem is a well-
known NP-hard problem which is important in both the-
ory and applications. Local search is a promising ap-
proach to find optimal or near-optimal solutions for large
instances. However, for industrial instances, the local
search approach is inferior to other approaches like the
core-guided ones. In this MaxSAT Evaluation, we submit
a solver (named HSGreedy) that tries to narrow the gap in
industrial instances. It is based on a state-of-the-art solver,
Dist, and makes significant refinements. More specifically,
during the execution it determines whether it should focus
more on hard clauses or soft clauses.

1. Introduction

The Maximum Satisfiability (MaxSAT) problem is a
well-known NP-hard problem. We use z; ...z, to be the
set of variables. A literal [ is a variable or its negation, a
clause is a disjunction of literals. Given a CNF formula
F=CiN...NC),, we associate C; with a positive integer
w(C;). Given a complete solution s, the cost of s is the total
weight of the unsatisfied clauses, i.e.,

cost(s) = Z

C'; 1S UNSATISFIED UNDER $

Given a weighted MaxSAT instance as above, the problem
is to find a solution which minimize the cost.

There are three other types of MaxSAT problems which
can all be encoded as a weighted MaxSAT problem. In un-
weighted MaxSAT problems, the weights associated with
each clause are 1. In partial MaxSAT, clauses are dis-
tinguished into hard clauses and soft clauses, where each
soft clause has weight 1 and each hard clause has a weight

which is greater than the total weight of all soft clauses. In
weighted partial MaxSAT, each soft clause can have a dif-
ferent weight.

2. Local Search for MaxSAT

The Dist [[1]] distinguishes hard clauses from soft clauses
and calculate hard scores and soft scores independently. It
adopts clause weighting for hard clauses, and uses the orig-
inal weights for soft clauses.

Given an assignment s and a variable x, we use s_, to
denote the assignment obtained from s by flipping x. Given
an assignment o, we use hcost(a) to denote the total weight
of hard unsatisfied clauses, and use scost(a) to denote the
total weight of soft unsatisfied clauses. We use hscore(z)
to denote the increase of satisfied hard clause weights, and
use sscore(x) to denote the increase of satisfied soft clause
weights. That is, hscore(x) = hcost(s) — hcost(s_,) and
sscore(x) = scost(s) — scost(s_;). Algorithm [1]is the
algorithm of Dist, where

1. p=0.01,

2. sp is set to 0.0001 for industrial instances with more
than 2500 variables, and 0.001 for all other instances.

3. Our Improvements

Considering Lines [7] to [8] we find that it is too blind to
select a variable randomly. We think that sometimes we
should focus more on hard clauses while sometimes we
should focus more on soft clauses. That is, sometimes we
should be in favor of hard score and sometimes soft score.
So we need a condition to determine whether hard or soft
score should be cared. Then we replace these two lines as
Algorithm 2] below.

In this algorithm, if scost(s) < scost®, it seems that
soft clauses have already been satisfied sufficiently, so we



Algorithm 1: Dist References

1 s < arandom generated truth assignment; [1] S. Cai, C. Luo, J. Thornton, and K. Su. Tailoring local
2 scost™ + +o0o; search for partial maxsat. In Proceedings of the Twenty-Eighth
3 for step < 1 to mazSteps do AAAI Conference on Artificial Intelligence, July 27 -31, 2014,
4 if hcost(s) =0& Scost(s) < scost* then Québec City, Québec, Canada., pages 2623-2629, 2014.
5 s* <+ s;
6 L scost™ + scost(s);
7 if H < {xz|hscore(x) >0} # Othen /x */
8 | v < arandom variable in H;
9 else if S < {z|hscore(x) = 0&sscore(x) > 0}
then /x o/
10 ‘ v < a variable in S with the greatest sscore;

11 else with probability sp: for each hard satisfied
clause with weight greater than 1, decrease its
weight by 1;

12 with probability 1 — sp: for each hard unsatisfied
clause, increase its weight by 1;

13 if there exists hard unsatisfied clause then
14 ‘ C < arandom hard unsatisfied clause;
15 else

16 L C < arandom soft unsatisfied clause;

17 With probability p: v < a variable in C' with the
greatest sscore;

18 With probability 1 — p: v <— a random variable in
C; /x  x/
19 S 4 S_g}

20 return s*;

Algorithm 2: HSG

1 if H < {z|hscore(x) > 0} # () then
if scost(s) < scost™ then
v < a variable with the greatest hscore;

2
3

4 else
5 L v <— a variable with the greatest sscore;

should satisfy more hard clauses, i.e., we should pick a vari-
able with the greatest hscore. Otherwise, we should pick a
variable with the greatest sscore.

4. Our Solver

We named our solver HSGreedy, and set p to 0.01. As
to sp, we set it to 0.0001 for instances containing more than
2500 variables, and set it to 0.001 otherwise.

5. Usage

./HS-Greedy instance





